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• Definition: autonomous agents, usually powered by large language 
models, that can follow language instructions to carry out diverse and 
complex tasks in real-world or simulated environments.
• Examples: Auto-GPT, GPT-Engineer, Voyager, RT-2, and many others
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Language agents

Probably the most heated thread in AI 
right now with massive public interests, 
e.g., Auto-GPT has received over 145k 
stars on GitHub within merely 4 
months, making it the fastest growing 
repository

 

https://github.com/Significant-Gravitas/Auto-GPT
https://github.com/AntonOsika/gpt-engineer
https://voyager.minedojo.org/
https://robotics-transformer2.github.io/
https://github.com/Significant-Gravitas/Auto-GPT
https://levelup.gitconnected.com/github-the-fastest-growing-repositories-of-all-time-f9884eb79e9
https://levelup.gitconnected.com/github-the-fastest-growing-repositories-of-all-time-f9884eb79e9


• The concept of agent has been introduced in AI since 
its dawn. It’s the first concept we teach in AI 101. 
What’s different this time around?
• I argue that the most fundamental change is the 

capability of using language. 
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But why?

• Contemporary AI agents use language as a vehicle for 
both thought and communication, a trait that was 
unique to humans.

https://www.demandsage.com/chatgpt-statistics/
Wei et al., 2022

Russel & Norvig, 2020

Therefore, these contemporary AI agents capable of using language 
for thought and communication should be called “language agents,” 

for language being their most salient trait. 
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Evolution of biological intelligence: an analogy
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Language agents: a conceptual framework



• Animals store memory through synaptic plasticity; artificial neural 
networks also store information in their weights (≈ synaptic strength) 
• In-context learning ≈	working memory 
• Long-term memory: LLMs’ parametric memory or vector database?
• Why LLMs can understand and generate language? LLMs may have 

internalized a compact “linguistic representation” by compressing the 
pre-training corpus, similar to how humans learn and memorize
• But can an LLM truly “understand” a concept (e.g., “apple”) without 

actually “seeing” the physical object?
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Memory
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Textual twin world theory



• Solely relying on an LLM’s static parameters can only do limited 
things. Tool augmentation brings unlimited possibilities.
• Three main purposes of tool augmentation 
• Complement language agents with specialized capabilities they may not 

have, e.g., high-precision calculation and routing on a map
• Provide up-to-date information, e.g., retriever and search engine 
• Enable language agents to take actions in real-world environments

• Two types of tools: read-only vs. state-changing (i.e., w/ side effects) 
• Robustness and flexibility in using tools is key. None of the existing 

systems, including ChatGPT Plugins, is sufficiently robust.
• Tools w/ side effects are riskier and require higher robustness. 
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Tool augmentation



• Reasoning is a continuum, not black and white. There has been too much 
evidence for LLMs’ various reasoning capabilities. Simply arguing that 
LLMs cannot reason at all may not be constructive discussion.
• Traditionally, reasoning and planning are relatively separate topics in AI.
• Reasoning: deductive (e.g., logic-based), inductive (e.g., ML)
• Planning: Given start and goal states, an action space, find (the optimal) solutions

• But now they are getting blended in language agents, consider, e.g., an 
embodied language agent acting in a partially-observable environment.
• New reasoning algorithms (e.g., chain/tree-of-thought) have emerged to 

unleash LLMs’ capability of using language for thought, but the truly 
transformative reasoning algorithms for language agents are probably 
yet to come
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Reasoning and planning



• Each environment is a unique context that provides possibly different 
interpretations of natural language, which brings the challenge of 
grounding, i.e., linking of (natural language) concepts to contexts (Chandu et al., 2021)

• Two types of grounding are central to language agents
• #1: Ground natural language to an environment, e.g., mapping an utterance to 

the right API call, SQL query, or robot plan
• #2: Ground an agent’s generation and decisions to its own context, including 

external information generated by tools

• Both remain challenging for current language agents
• Some good news for #2? Our recent work finds that LLMs are highly receptive to 

external evidence, if we present it in a coherent and convincing way
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Grounding

Xie et al., 2023. Adaptive Chameleon or Stubborn Sloth: Unraveling the Behavior of Large Language 
Models in Knowledge Clashes. arxiv preprint.

https://arxiv.org/abs/2305.13300
https://arxiv.org/abs/2305.13300
https://arxiv.org/abs/2305.13300


• Don't Generate, Discriminate: A Proposal for Grounding Language Models to 
Real-World Environments
Yu Gu, Xiang Deng, Yu Su                                                                                                     
ACL 2023 (Outstanding Paper Award)

• Mind2Web: Towards a Generalist Agent for the Web
Xiang Deng, Yu Gu, Boyuan Zheng, Shijie Chen, Samuel Stevens, Boshi Wang, Huan Sun, Yu Su                                                                                                        
Under Review

• LLM-Planner: Few-Shot Grounded Planning for Embodied Agents with Large 
Language Models 
Chan Hee Song, Jiaman Wu, Clayton Washington, Brian M. Sadler, Wei-Lun Chao, Yu Su      
ICCV 2023
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For the rest of the talk



Grounded language understanding
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Given a natural language utterance 
𝑢 and a target environment 𝐸

𝜋: (𝑢, 𝐸)	à 𝑝, s.t. 𝑢 ! = 𝑝 !
Where 𝑝 is a plan/program in a formal language, and " ! is the denotation



Grounded language understanding

13

Given a natural language utterance 
𝑢 and a target environment 𝐸

𝜋: (𝑢, 𝐸)	à 𝑝, s.t. 𝑢 ! = 𝑝 !
Where 𝑝 is a plan/program in a formal language, and " ! is the denotation

𝑢: What is the latest released computer emulator developed in Java? 

𝑝: (ARGMAX (AND ComputerEmulator 
                              (JOIN LanguagesUsed Java)) 
                     LatestReleaseDate) 



Grounded language understanding
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Given a natural language utterance 
𝑢 and a target environment 𝐸

𝜋: (𝑢, 𝐸)	à 𝑝, s.t. 𝑢 ! = 𝑝 !
Where 𝑝 is a plan/program in a formal language, and " ! is the denotation

𝑢: Bring me a cup of coffee 

𝑝: [turn left, move forward, pick up cup, turn around, move forward,  
     …, put cup in coffee maker, toggle coffee maker, …]



Pangu: A Unified Framework for Grounded 
Language Understanding

Yu Gu, Xiang Deng, Yu Su
The Ohio State University

ACL 2023 (Outstanding Paper Award)
Slides credit to Yu Gu
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Q1: Find the right program over a KB
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Question: Who has ever coached an ice hockey team 
in Canada?

Program:
A. (AND cricket.cricket_coach (JOIN cricket.cricket_team.coach_inv (JOIN 

sports.sports_team.location Canada)))

B. (AND ice_hockey.hockey_coach (JOIN ice_hockey.hockey_team.coach_inv (JOIN 
sports.sports_team.location Canada)))

C. (AND ice_hockey.hockey_team (JOIN sports.sports_team.location Canada))



Q2: Write the corresponding KB program
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Question: What's the classification of the M10 engine?

Program:
(AND automotive.engine_type (JOIN automotive.engine_type.used_in M10))



Why is Q2 harder?

                  You need to learn the grammar

       You need to know the environment specifics
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Generation

Discrimination

Directly generating plans (programs) 
may not be the optimal way of using 

LMs for grounded language 
understanding
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Key message



Pangu:

A unified framework that models 
grounded language understanding as 

a discrimination task
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Our proposal: Pangu

Goals:
§ Allow LMs to focus on 

discrimination
§ Generic for different tasks

A symbolic agent searches the environment to propose valid candidate 
plans, while a neural LM scores the plans to guide the search process 
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Algorithmic definition
Initialization of search

Propose candidate plans 
from the environment

Rank candidate plans using 
a language model

Repeat until the termination 
condition is met
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Instantiation for KBQA

Testbed:
§ KBQA 
 45M entities 
 3B facts

LMs:
§ BERT
§ T5
§ Codex
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New SoTA for KBQA
Prior Art 78.7
Pangu w/ BERT-base 79.9
Pangu w/ T5-base 79.9
Pangu w/ T5-3B 81.7

Prior Art 34.3
Pangu w/ BERT-base 52.0
Pangu w/ T5-base 53.3
Pangu w/ T5-3B 62.2

Prior Art 78.8
Pangu w/ BERT-base 77.9
Pangu w/ T5-base 77.3
Pangu w/ T5-3B 79.6

F1 on GrailQA
(i.i.d. + non-i.i.d., ~45K 

training examples) 

F1 on GraphQuestions
(non-i.i.d., ~2K training 

examples) 

F1 on WebQSP
(i.i.d., ~3K training 

examples) 

Findings:
     Particularly strong performance
         for non-i.i.d. generalization

         Stable gain from increased
         model size
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In-context learning with LLMs
Prior Art 78.7
Codex 10-shot 48.9
Codex 100-shot 53.3
Codex 1000-shot 56.4

Prior Art 34.3
Codex 10-shot 42.8
Codex 100-shot 43.3
Codex 1000-shot 44.3

Prior Art 78.8
Codex 10-shot 45.9
Codex 100-shot 54.5
Codex 1000-shot 68.3

F1 on GrailQA
(i.i.d. + non-i.i.d., ~45K 

training examples) 

F1 on GraphQuestions
(non-i.i.d., ~2K training 

examples) 

F1 on WebQSP
(i.i.d., ~3K training 

examples) 

Findings:
     SoTA performance on GraphQ
         with only 10 training examples

         Marginal gain from more
         training data for non-i.i.d.
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Mind2Web: Towards a Generalist Agent for the Web

Xiang Deng, Yu Gu, Boyuan Zheng, 
Shijie Chen, Samuel Stevens, Boshi Wang, 

Huan Sun, Yu Su

https://osu-nlp-group.github.io/Mind2Web/
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● The modern web is very powerful. There’s a website for almost 
everything.

● However, modern websites have also become very complex, 
incurring a steep learning curve and decreasing accessibility. 

● A language agent can translate users’ mind to actions on the web, 
hence Mind2Web.

● On the other hand, such a web agent could also turn the entire 
web into an unprecedentedly powerful and versatile tool for LLMs. 
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Motivation



● Desiderata for a generalist web agent
○ It shall work on any website on the Internet
○ It shall work on real-world websites, which can be dynamic, complex, 

and noisy
○ It shall support diverse and sophisticated interactions with websites.

● Unique features of Mind2Web for generalist web agents
○ Diverse coverage of domains, websites, and tasks: 2,000+ open-ended 

tasks curated from 137 websites that span 31 different domains
○ Use of real-world websites: full traces of user interactions, webpage 

snapshots, and network traffic are provided.
○ A broad spectrum of user interaction patterns: users can click, select, 

and type in any elements on the website.
30

Mind2Web: the first dataset for generalist web agents
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Data annotation
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MindAct: collaboration b/w small & large LMs



● GPT-4 is particularly strong, close to fine-tuned Flan-T5
● There’s still a substantial room for improvement towards generalist 

web agents
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Results

Ele. Acc: Element Selection Accuracy, Op. F1: Operation F1, SR: Success Rate (step-wise and end-to-end)



LLM-Planner: Few-Shot Grounded Planning for 
Embodied Agents with Large Language Models

Chan Hee Song, Jiaman Wu, Clayton 
Washington, Brian M. Sadler, Wei-Lun Chao, Yu Su

ICCV 2023



Embodied language agents
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§ Embodied agents follow 
instructions to complete 
tasks in physical 
environments

§ Diverse tasks (7) and 
environments (120)

§ Long-horizon tasks: avg. 
     50 steps
§ Can LLMs help?



Embodied agent planning with LLMs? 
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Instruction: “make me a cup of coffee”

Low-level Plan: [turn left, move forward, pick up cup, turn  
    around, move forward,  …, put cup in coffee maker, …]

LLM?



Hierarchical planning with LLMs
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Instruction: “make me a cup of coffee”

Low-level Plan: [turn left, move forward, pick up cup, turn  
    around, move forward,  …, put cup in coffee maker, …]

High-level Plan: [navigation cup, pick up cup, navigation 
    coffee machine, …]

LLM-Planner

Low-level planner



Dynamic grounded planning
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Instruction: “make me a cup of coffee”

Low-level Plan: [Turn left, move forward, pick up cup, 
turn around, move forward,  …, put cup in coffee 
maker, …]

High-level Plan: [navigation cup, pick up cup, 
navigation coffee machine, …]

LLM-Planner

Low-level planner





• LLM-Planner achieves competitive performance with only 100 training examples
• Existing methods can barely complete any task under the same low-data setting 

Evaluation on ALFRED

SR: Success Rate, GC: Goal Completion Rate, HLP ACC: High-level Planning Accuracy
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What’s the journey ahead of us?
• Is NLP dead/solved?

• Absolutely not. It’s the most exciting time for NLP ever!

• However, instead of natural language processing, perhaps we 
should focus on natural language programming next
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Natural language programming

Language Agent



Acknowledgements
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• A lot of excitement in this space. LLMs are fully embraced by robotics.
• Generally, there are two threads: real-world vs. simulated
• Real-world embodied agents (e.g., RT-2) need to operate with a lot of low-

level constraints from current hardware, but leading to immediate apps
• Simulated embodied agents (e.g., Voyager) allow for research on more 

sophisticated learning and reasoning
• Multimodal foundation models are key 
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Embodiment

https://robotics-transformer2.github.io/
https://voyager.minedojo.org/


Pangu Improves Sample Efficiency
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Pangu vs. Constrained Decoding
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Autoregressive models tend to overfit seen 
structures during training

Highly Skewed



Adaptive Chameleon or Stubborn Sloth: 
Unraveling the Behavior of Large Language Models in 

Knowledge Clashes

Jian Xie*, Kai Zhang*, 
Jiangjie Chen, Renze Lou, Yu Su

https://arxiv.org/abs/2305.13300



● Parametric memory of an LLM is 
formed during pre-training. However, 
such static parametric memory may be 
inaccurate or become outdated.

● External evidence provided by external 
tools such as retrievers is a promising 
solution to augment LLMs with up-to-
date and accurate information (e.g., New 
Bing). Inevitably, such evidence may 
conflict with parametric memory.

Question: How receptive are LLMs to 
external evidence? 

Transparency and Explainability: LLMs facing external information



Systematically elicit memory and simulate conflicts

Xie et al. https://arxiv.org/pdf/2305.13300.pdf

https://arxiv.org/pdf/2305.13300.pdf


Supportive and contradictory evidence for control study



LLMs are highly 
receptive 
(or gullible?)

• When only counter-memory is presented as 
evidence, LLMs are very happy to change their mind

• However, only when the evidence is presented in a 
coherent and convincing way

• LLMs can be easily deceived by adversarial tool!

Only 
this is 
shown



LLMs show strong 
confirmation bias

• When conflicting evidence (both supportive and 
conflicting) is present, LLMs show a strong confirmation 
bias and tend to cling to their parametric memory

• Challenges for LLMs to unbiasedly orchestrate multiple 
pieces of conflicting evidence, a common scenario faced 
by generative search engines

Both 
are 

shown


